

L. Strow

Three Years of CO₂ Retrievals with AIRS

L.Larrabee Strow and Scott Hannon

Atmospheric Spectroscopy Laboratory (ASL)
Physics Department
and the
Joint Center for Earth Systems Technology

University of Maryland Baltimore County (UMBC)

September 26, 2006

- During RTA validation found that CO₂ growth rate impacted results
- Variable CO₂ must be taken into account for climate-quality results from AIRS (and RTA validation);
- V5: Single fixed growth rate, no latitude dependence
- Retrievals of CO₂ using only AIRS data have concentrated on upper-trop channels and have not examined long time-series.
- We use ECMWF (independent T(p)?) and NOAA/CMDL MLO CO₂ to examine AIRS sensitivity to CO₂ and implications for radiometric stability
- Calibrate AIRS CO₂ channels with MLO (altitude close peak of weighting functions for channels used here).
- Apply results to other latitudes. Use channels with different T(p) sensitivities to evaluate possible ECMWF T(p) errors.
- Use "uniform_clear" subuset of clear ocean FOVS generated at LIMRC

AIRS Radiometric Stability via SST Obs (Aumann: JGR 2006)

0.2K absolute accuracy, <0.016K/year stability for 2616 cm⁻¹ channel

Validation: Coincident RS-90's vs ECMWF

Three Years of CO₂ Retrievals with AIRS

I Camarr

Channel Selection: CO2

Three Years of CO₂ Retrievals with AIRS

- Need to use mid- to lower-tropospheric channels since "truth" is known there (Mauna Loa record).
- ECMWF fields are largely unbiased relative to radiosondes for lower- to mid-trop, esp. Northern Hemisphere. (private comm. R. Engelen).
- Retrieve CO₂ from AIRS radiances using ECMWF for T(p).
- Compare retrieved CO_2 to NOAA/CMDL MLO, located at \sim 650 mbar.
- Test sensitivity to ECMWF T(p) by using channels with very different temperature sensitivities.
- Pick CO₂ channels away from interferences
- Channels: 791.7 cm⁻¹, and 2392-2400 cm⁻¹, CO₂ W.F. peaks around MLO altitude.

Ratio of CO₂ to T(p) Jacobians

CO₂ Retrieval Using Shortwave Channels

Three Years of CO₂ Retrievals with AIRS

But: Need Better AIRS Frequency Calibration!

AIRS Radiances Have a 1-time offset in Nov. 2003: Avoid

AIRS Freq. Cal. Results

Daytime Frequency Shifts (Nov. 2003 Corrected)

Three Years of CO₂ Retrievals with AIRS

I Chron

Translation of Freq. Cal. into CO₂ Errors

Three Years of CO₂ Retrievals with AIRS

Contamination of CO₂ Channels by Other Gases: LW

Three Years of CO₂ Retrievals with AIRS

Contamination of CO₂ Channels by Other Gases: SW

- $BT_{obs} BT_{calc}(ECMWF) = \frac{dB}{dCO_2} \delta CO_2 + \frac{dB}{dT} \delta T_s$
- SW: 2392-2420 cm⁻¹, all channels used for both CO₂ and Т
- LW: 791.7 cm⁻¹ used for CO₂ and T_s ; 790.3 and 801.1 cm⁻¹ used for T_s only.
- CO₂ and T_s solved for each profile, Start with 2616 cm⁻¹ $T_{\rm s}$. Probably solving for emissivity at 2400 cm⁻¹, residual H_2O and emissivity at 791 cm⁻¹.
- Median CO₂ and T_s binned for 1 deg. latitude bins
- 38 months of data analyzed
- Error analysis not complete

Clear FOV Observation Statistics

CO₂ Signal with *no* ECMWF (blue): LW

CO₂ Signal with no ECMWF (blue): SW

ASL AIRS CO₂ Retrievals -7 to +43 Deg. Lat.

ASL AIRS CO_2 Retrievals ± 5 Deg. Lat.

AIRS CO₂ Retrievals 35-45 Deg. Lat., +NOAA/MBL

Three Years of CO₂ Retrievals with AIRS

AIRS 3-Year CO_2 , SW and LW Correlation = 0.89

Three Years of CO₂ Retrievals with AIRS

Left: Shortwave Right: Longwave

SW minus LW AIRS CO₂

Three Years of CO₂ Retrievals with AIRS

Left: -5 to +20 ppm Right: -5 to +5 ppm

Mean CO₂ Growth Rate over 1st 3 Years

Three Years of CO₂ Retrievals with AIRS

 ± 45 Deg. Lat. SW vs LW rates imply AIRS stability of ${\sim}0.002$ - 0.006 K/year

NOAA/CMDL MLO Growth Rates (Tans)

Retrieved CO₂ vs T in Northern Hemisphere

Retrieved CO₂ vs T in Southern Hemisphere

Three Years of CO₂ Retrievals with AIRS

Retrieved CO₂ vs T in Tropics

Three Years of CO₂ Retrievals with AIRS

SW vs LW vs NOAA/CMDL MBL Time Series

Three Years of CO₂ Retrievals with AIRS

L. Strow

Strow

Strow

Strow

Three Years of CO₂ Retrievals with AIRS

Strow

Three Years of CO₂ Retrievals with AIRS

Strow

Conclusions

Three Years of CO₂ Retrievals with AIRS

- AIRS radiometric stability at the ~0.005K/year established with 791 and 2400 cm⁻¹ channels, in agreement with Aumann SST studies.
- AIRS sees phase delay from surface to mid-trop CO₂ transport
- Potentially retrieve CO₂ growth rates versus latitude, good agreement with NOAA/CMDL MLO in-situ measurements
- Results dependent on UMBC spectral calibration

ASL Jan 2004: Red: NOAA/CMDL MBL

Feb. 2004: Red: NOAA/CMDL MBL

Mar. 2004: Red: NOAA/CMDL MBL

Three Years of CO₂ Retrievals with AIRS

ASL Apr. 2004: Red: NOAA/CMDL MBL

May 2004: Red: NOAA/CMDL MBL

ASL June 2004: Red: NOAA/CMDL MBL

ASL July 2004: Red: NOAA/CMDL MBL

ASL Aug. 2004: Red: NOAA/CMDL MBL

Sept. 2004: Red: NOAA/CMDL MBL

Three Years of CO₂ Retrievals with AIRS

Oct. 2004: Red: NOAA/CMDL MBL

Three Years of CO₂ Retrievals with AIRS

Nov. 2004: Red: NOAA/CMDL MBL

Three Years of CO₂ Retrievals with AIRS

Dec. 2004: Red: NOAA/CMDL MBL

